The unitary completion and QR iterations for a class of structured matrices

نویسندگان

  • Dario Bini
  • Yuli Eidelman
  • Luca Gemignani
  • Israel Gohberg
چکیده

We consider the problem of completion of a matrix with a specified lower triangular part to a unitary matrix. In this paper we obtain the necessary and sufficient conditions of existence of a unitary completion without any additional constraints and give a general formula for this completion. The paper is mainly focused on matrices with the specified lower triangular part of a special form. For such a specified part the unitary completion is a structured matrix, and we derive in this paper the formulas for its structure. Next we apply the unitary completion method to the solution of the eigenvalue problem for a class of structured matrices via structured QR iterations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chasing bulges or rotations? A new family of matrices admitting linear time QR-steps

The QR-algorithm is a renowned method for computing all eigenvalues of an arbitrary matrix. A preliminary unitary similarity transformation to Hessenberg form is indispensable for keeping the computational complexity of the subsequent QR-steps under control. In this paper, a whole new family of matrices, sharing the major qualities of Hessenberg matrices, will be put forward. This gives rise to...

متن کامل

A new iteration for computing the eigenvalues of semiseparable (plus diagonal) matrices

This paper proposes a new type of iteration based on a structured rank factorization for computing eigenvalues of semiseparable and semiseparable plus diagonal matrices. Also the case of higher order semiseparability ranks is included. More precisely, instead of the traditional QR-iteration, a QH-iteration will be used. The QH-factorization is characterized by a unitary matrix Q and a Hessenber...

متن کامل

Eigenvalue computation for unitary rank structured matrices

In this paper we describe how to compute the eigenvalues of a unitary rank structured matrix in two steps. First we perform a reduction of the given matrix into Hessenberg form, next we compute the eigenvalues of this resulting Hessenberg matrix via an implicit QR-algorithm. Along the way, we explainhow the knowledge of a certain ‘shift’ correction term to the structure can be used to speed up ...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

A Study of the Hr and Extended Hr Methods for the Standard Eigenvalue Problem

The QR method is a very eecient method for computing the spectrum of Hermitian tridiagonal matrices since the tridiagonal form is preserved over the iterations. For non-Hermitian tridiagonal matrices the QR method destroys the tridiagonal form. In this report we study two methods, the HR and the XHR methods, that preserve tridiagonal form for pseudo-Hermitian matrices. We also report results fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008